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Informationally Complete Sets of Physical Quantities 
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The notion of informational completeness is formulated within the convex state 
(or operational) approach to statistical physical theories and employed to intro- 
duce a type of statistical metrics. Further, a criterion for a set of physical quanti- 
ties to be informationally complete is proven. Some applications of this result are 
given within the algebraic and Hilbert space formulations of quantum theory. 

1. INTRODUCTION 

In the past years the concept of quantum observable was generalized in a 
systematic and thorough way so as to cover what is called unsharp observable 
today. Quite surprisingly, the set of unsharp quantum observables shows 
features which so far were known only in the realm of classical physics: 
noncommuting observables can be made coexistent, that is, jointly measur- 
able, by introducing a sufficient degree of unsharpness in a well-defined way. 
Moreover, there exist unsharp observables the measurement of which allows 
a unique determination of the state of the object. Such observables are called 
informationally complete, which property is the subject of the present paper. 

The case of classical statistical theories is particularly simple insofar as 
all observables are coexistent, so that there exists a common joint observable 
which necessarily is informationally complete. Therefore, in the applications 
of our general results we shall be concerned mainly with the quantum case. 

The quasiclassical features of unsharp and, in particular, information- 
ally complete observables raise the hope that their consideration may contri- 
bute to a better understanding of the relation between quantum mechanics 
and macroscopic theories. A systematic common framework for classical and 
quantum statistical theories is provided by the convex state, or operational 
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approach. Moreover, essential features of informationally complete observ- 
ables can be described in very general terms within this approach. For these 
reasons we shall present our results within the convex state scheme. 

In Section 2 a short summary of the basic structures of general statistical 
physical theories is given and the concept of informational completeness is 
formulated within this framework. Section 3 introduces a type of statistical 
metric induced by informationally complete observables. Further, such 
observables are shown to give rise to injective isometric embeddings of stat- 
istical theories into classical statistical structures. A characterization of infor- 
mationally complete sets of physical quantities is given in Section 4, while 
Section 5 contains some applications of this result. Finally, in Section 6 the 
relevance of informationally complete observables in various fields of physics 
is briefly pointed out. 

2. INFORMATIONALLY COMPLETE OBSERVABLES IN 
STATISTICAL STATE SPACES 

Let (-/r, ~ )  be a complete base norm space and (~,  e) its complete dual 
order unit space (Alfsen, 1971). That is, V is a real Banach space with 
closed, generating, proper cone ~/~ +, the closed convex set ~ being a base 
of ~ +. The cone ~/- + makes ~ an ordered vector space by virtue of the 
partial ordering p_< o-, defined as o r -p~  ~//" +. The order unit e of ~ = ~//~* is 
the positive linear functional on ~ satisfying e(p) = Ilpll = 1 for p ~ .  Here 
II" II is the base norm defined as 

Ilpll --- inf{2>0:  p e a  conv(Se w - S ) }  

The base 6e is interpreted as the set of statistical states of a physical system; 
is called the state space of the system. The partial ordering on U is 

naturally transferred into the dual space ~ via x<y iff x(p)<_y(p) for all 
pc  f +. The order unit interval g = [0, e] of ~ is interpreted physically as 
the set of effects (Ludwig, 1983) representing the possible outcomes of the 
so-called simple experiments (i.e., experiments having just two elementary 
outcomes): in short, if p e g '  and xeS ,  then the number x(p)e[0, 1] is the 
probability for the effect x in the state p. Making use of the natural 
embedding ~ ~ ~*,  we shall also apply the notation p(x) for x(p). 

By definition, a physical quantity (an observable) is a (normalized) 
effect-valued measure A : Z--*g from a Boolean o--algebra Z into the set of 
effects. Usually Z is taken to be a o--algebra of subsets of a set fL In the 
spirit of a generalized spectral theory (Abbati and Mania, 1981) one may 
also introduce observables as certain elements in the closure (in a suitable 
topology) of the span of the range R(A) of an effect-valued measure 
(Schroeck, 1988; Schroeck, 1989). In this sense we shall refer to the whole 
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of  N as the space of observables of a physical system and to the effect-valued 
measures as the effect observables. 

An important task of physical experiments is the inference of the state 
of a physical system (or of an ensemble of  systems) from the measurement 
statistics. This problem suggests the following definitions [which are system- 
atically reviewed in Busch and Lahti (1989)]. Let 5O, 5O'~_ N be subsets of 
observables, J -  _ Y a subset of states. Two states p, a are called equivalent 
with respect to 5O iff p(x) = o'(x) for all x e 5O. The corresponding equivalence 
classes are denoted as [p]~e. Sets s and s are called informationalIy equiva- 
lent (with respect to J-)  iff [p]'~= [p]SO, for all pc& ~ (resp. pe~Y-) (Ali and 
Doebner, 1976). s is said to be informationally complete (with respect to 
Y-) iff [p]~= {p} for all p c 5  ~ (resp. p e W )  (Ali and Prugovecki, 1977a; 
Prugovecki, 1977). Clearly, 5O = g is informationally complete (as the span 
of d o is N). But in view of the limited experimental possibilities, it would be 
desirable to find smaller sets of effects which are informationally complete. 
In particular, an effect observable is called informationally complete if its 
range is informationally complete. Such observables are known in quantum 
mechanics (cf. Section 5); but it is easy to see that no spectral measure is 
informationally complete (Busch and Lahti, 1989). 

We note that any effect observable A induces in a canonical way the 
structure of  a reduced statistical state space with respect to which it is infor- 
mationally complete. This reduced state space is constituted by the equiva- 
lence classes [p]A _ [p]R(~) [R(A) denoting the range of  A, peS'~], which form 
a convex set by virtue of  the operation 

k[p] ~ + (1 - ;L)[~] ~ - [;W+ (1 - k)o-] ~ 

Typical examples of  such a structure are quantum mechanical superselection 
rules, or sets of  macroscopically distinguishable states in statistical physical 
theories. In both cases there are classical, resp. macroscopic, observables 
which induce the reduction of the state spaces. 

In general, a set 5 ~ _c ~ is informationally complete exactly if it is infor- 
mationally equivalent to g. We shall derive a relation between 56 and ~ as 
a necessary and sufficient condition for 56 to be informationally complete. 
Let 5O = R(A) be the range of an informationally complete effect observable 
A; then the statistics {p(x):xeR(A)} uniquely determines the state p c 5  ~. 
But the knowledge of  p allows one to calculate the statistics and expectation 
values of  all observables. Thus, it is clear that the range R(A) of an infor- 
mationally complete effect observable entails the whole of ~ in some sense. 
It is the task of this paper to elucidate in which sense this is true. Further- 
more, the one-to-one correspondence between the statistics and the states 
provides a method of constructing classical representations of general statist- 
ical state spaces. 
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To begin with, we investigate some topological implications of the 
notion of informational completeness giving rise to a class of statistical 
metrics. 

3. STATISTICAL METRIC 

In the following ~ denotes a subset of ~ .  We start with a trivial 
reformulation of the definition of informational completeness. 

Lemma 1. The following are equivalent: 
(i) ~ is informationally complete. 

(ii) Vpe~{VxeZ,  e u {e}p(x) = 0 ~ p =  0}. 

Proof Put p= p+ - p_ with p+, p_ e ~  +. First, let ~ be information- 
ally complete. Asume p(x) = 0 for all x e ~ w {e}, but p # O. Now 0 = p(e) = 
p+ ( e ) -  p_ (e), which implies that p§ p_ (e). I f  p(e)= 0, then p+(x)= 0 
for all xeE,  and therefore p§ = O. As p+(e)=0 is equivalent to p_(e)=0,  
it follows that p---O, in contradiction to our assumption. Hence p§ 
and thus both p+ and p_ are nonzero. Now define ~+ =p+/p§ ~_ = 
p _ / p -  (e) e 0 ~ It follows that/~(x) - ~§ (x) - /b_ (x) = p(x)/p§ (e) = 0 for all 
x e ~  and ~ §  thus /5§ #r in contradiction to the 
informational completeness of 5~. 

Conversely, let (ii) hold true, p~, p2e:T. Assume pl(x)=p2(x) for all 
x e ~  w {e}. Define p = p l - p 2  ; then p(x) =0  for all xe~C~ ~ u {e}, hence p =  
O and Pl =P2. Thus, 5e is informationally complete. �9 

Lemma 2. 5F is informationally complete iff s w {e} is informationally 
complete. 

Proof This is a direct consequence of the definition or of Lemma 1. �9 

We define a semimetric on 5 a via 

d~e: ~ x 5~--'9t + 

(p, c 0 ~ d~e(p, cr) - sup{ IP(x) - o r ( x ) l / t l x l l z x~ \ { o} }  

Proposition 1. The following are equivalent: 
(i) ~ is informationally complete. 

(ii) d~ is a metric on 5C 

Proof The validity of the triangle inequality is straightforward. One 
easily checks that dd(p, o-) = 0 is equivalent to p(x) = or(x) for all x~ 5e\{ O}. 
Therefore, d~(p, ~r) =0  implies that p =  o-for all p, ere5 p iffSr is information- 
ally complete. �9 
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This result shows that any informationally complete observable A 
induces a statistical metric dA -dR(A) on the set 6 a of  statistical states. 
Furthermore, if an observable B is finer than an observable A, that is, 
if R ( A ) c R ( B ) ,  then one has dA<dB. In general it holds true that dz<_d~. 
These relations may be interpreted in the following way. The statistical 
metric associated to an informationally complete observable provides a 
means of distinguishing the states in St. In this sense the state resolution is 
the better, the finer the considered observable is. 

We define a seminorm on U via 

It' It~o: ~ 9t  + 

p ~  Irpll_~- sup{ip(x)l/flxlt:x~.~\{o}} 

Note that d~(p, a) = lip- trite. 

Proposition 2. The following are equivalent: 
(i) ~e is informationaUy complete. 

(ii) I1" I1-~ {e} is a norm on ~ .  

Proof This is a straightforward consequence of Lemma 1. �9 

We note that the above statistical metric, resp. norm (Busch, 1987a), 
are generalizations of  the natural metric, resp. norm, studied in Gudder 
(1973), Hadjisavvas (1981), and Jauch et al. (1968). While one has again 
FI" l l ~ <  I t  ll~, it is not known whether these norms are equivalent. In the 
case of  the quantum mechanical state space the norm 1[. I1~ is equivalent to 
the base norm (i.e., the trace norm). 

The statistical norm I1' IIA --" II" IIR(A> associated to an informationally 
complete observable A admits an interesting measure-theoretic interpreta- 
tion. Let (fL Z) be the value space of  A; then due to the informational 
completeness of  A any state p is represented in a unique way as a probability 
measure Ap on (fL Z). In the context of quantum mechanics such classical 
representations of statistical states were introduced as phase space representa- 
tions in Ali and Prugovecki (1977a); they will be analyzed in more general 
terms in a forthcoming work (Busch et al., 1990). The point of  interest in 
the present context is that the statistical (A-) norm of a state p coincides 
with the total variation norm of the associated measure, that is, II Pll A = IIApll �9 
Hence, the linear mapping p ~ Ap is an isometry with respect to this norm. 

In the following we formulate some preparatory statements for the main 
result of  this paper. 

Lemma 3. cf  is informationally complete iff span(LP) is informationally 
complete. 
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Proof One implication is obvious. To prove the reverse, assume that 
is not informationally complete. Thus, by Lemma 1 there exists p e V ,  

pr such that p (x )=0  for all x e ~ u { e } .  Then also p (x )=0  for all 
x e s p a n ( ~ ) ,  which shows that span(~)  is not informationally complete 
either. �9 

In the following ~ (~) denotes the o-(N, ~ )-, or o'-weak closure of 
in N. 

Lemma 4. ~ is informationally complete iff 27 (') is informationally 
complete. 

Proof. One implication is obvious. To show the reverse, assume that 
is not informationally complete. There exists p s ~  such that p(x)= 0 for 

all x~Se w {e} and p ~  O. Let x~& a(~). There is a net (xz)c  ~ converging 
to x in the o--weak topology. Thus, p(xx-x)~O. Since p(xx)=0 for all ~,, 
one obtains p(x)=0. As this holds true for arbitrary aeSe (~), this set is not 
informationally complete either. �9 

Lemma 5. ~ is informationally complete iff (span(Se)) (~) is infor- 
mationally complete. 

Proof This follows directly from Lemmas 3 and 4. �9 

4. CRITERION FOR INFORMATIONAL COMPLETENESS 

The following theorem provides a basis for a variety of applications, 
yielding either new results or new insight into known facts. Some examples 
will be given in Section 5. 

Theorem 1. A subset 5? of the dual order unit space ~ of a complete 
base norm space ( ~ ,  6 e) is informationally complete iff s p a n ( ~  u {e}) is 
o--weakly dense in ~ .  

Proof By Lemmas 2 and 5, the informational completeness of ~ is 
equivalent to that of ~ee= [span(~  w {e} )](~). Further, this set is infor- 
mationally complete if and only if its annihilator 2,e e a = { O}. By well-known 
duality theorems (Rudin, 1973, Theorems 4.7 and 4.9) this last equality is 
equivalent to ~ee = N. �9 

We note that if e~[span(A?)] (~), then ~ is informationally complete iff 
[span(~,e)] (~ = ~ .  Further, if ~/" is a base norm space of finite dimension n, 
then a set s c ~ = ~ * is informationally complete iff its span has dimension 
n [in case e~span(L?)], resp., n -  1 [in case e~span(~)] .  
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5. SOME APPLICATIONS 

A realization of the base norm space and dual order unit space scheme 
suitable for physical applications is provided by the W*-algebraic approach. 
Let d be a unital W*-algebra and d ,  its predual, the space of normal 
states on d .  Then one identifies ~ - ( d , ) h ,  the Hermitian part of d ,  

- (d , )~ - ,  the normal states on d ,  ~ - d h ,  and ~ - { x e d §  : UxH-< 1}. 
The order unit element e is given by the unit element I of d .  

We shall mostly be concerned with the quantum mechanical realization 
of a concrete W*-system, given by d - ~ ( ~ ) ,  the von Neumann algebra 
of bounded operators acting on a complex separable Hilbert space ~ ,  in 
which case the predual d ,  can be identified with ~1(~':), the trace class. 
The order unit of ~ is given by the trace functional via e(p) - Tr(p) = p(I), 
p e a l , .  In general, the duality between ~ 1 ( ~ )  and ~ ( ~ )  is represented as 
x(p)=Tr[xp] (for xe~(J~,~), P e ~ l ( ~ ) ) .  Finally, note that the o--weak 
topology on ~ ( ~ )  coincides with the ultraweak operator topology. 

Example 1. Let sx, Sy, s, be the spin operators acting as generators of 
an irreducible representation of the rotation group on the Hilbert space 
~ s = ~  ~, n=2s+ 1, s=O, 1/2, 1, 3/2 . . . . .  Let Ae be the union of the ranges 
R(E ~') of the spectral measures of the si. As a consequence of Theorem 1, 

is informationally complete iff s < 1 [note the error in Busch and Lahti 
(1989)]. 

Example 2. The Schroeck problem (Schroeck, 1981). We define a phase 
space observable as an effect-valued (or positive-operator-valued) measure 
on the Borel algebra ~ ( F )  of phase space F - 0t 2 (endowed with the usual 
symplectic form 7) into ~ ( ~ ) ,  where ~,~ hosts an irreducible representation 
U: x ~ Ux of the Weyl relations UxUy=exp[o,(x, y)/2/i] Ux.y. With x-- 
(q, p), y = (q', p' ) we have 7(x, y) = q" p' - p "  q'. The self-adjoint generators 
Q, P of U, defined through U(q,p) = exp[i(q �9 P - p .  Q)/]i], satisfy the canon- 
ical commutation relations. Let dp(q,p)=dq dp/2~rli be the Haar measure 
on F (viewed as the locally compact phase space translation group). Finally, 
let To �9 ~ ( ~ )  be a positive operator of trace one. Then the following defines 
a covariant phase space observable (Prugovecki, 1986): 

a: ~ ( F )  - ,  8 

Z ~---, a(Z) = J~ Tqp dp(q, p) 

Tqp = U(q,p)ToU~lm 

Such phase space observables represent simultaneous position-momentum 
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(Q, P) measurements obeying the uncertainty relation; they lead to irreduc- 
ible phase space representations of  quantum mechanics in terms of  irreduc- 
ible subspaces of L~(F, p) (Ali, 1985; Prugovecki, 1986). The informational 
completeness of  a is equivalent to the condition Tr[Tqp. To] ~ 0  for all 
(q, p) ~ F (Prugovecki, 1986). 

We note that any operator of  the form 

a ( f ) =  f r f ( q , p ) T q v d p ( q , p ) ~ ( Y f ) ,  f e L ~ ( F , p )  

can be approximated (strongly) by means of elements from the span of the 
range R(a)= a ( ~ ( F ) )  of  a (Schroeck, 1988, 1989, 1990). Now the question 
is how large the set of  such operators 

d ( a )  - {a(f):  f~L~(F,/ . t )}  

is in ~(~vf). Theorem 1 gives a partial answer: 

( d ( a ) ) ( '~) = ~ ( ~ff ) r a is informationally complete 

The proof  follows from the observation that 

span(R(a)) ~_ d ( a )  ~_ [span(R(a))] (~) 

Finally, we note some further implications for the quantum theory of 
measurement, a more detailed discussion of which can be found in Busch 
and Lahti (1989). 

Proposition 3. If a: E --* M(Jg ) + is an informationally complete effect 
observable, then it is totally noncommutative, i.e., 

corn(a) - {q~eJg: a(X)a(Y)(o=a(Y)a(X)~o for all X, Yel~} = {0}. 

Proof To verify this statement, we note that the following chain of 
equations holds: 

corn(5 ~ = com(&e w {I} ) = com(span(~  w {I} )) 

= com([ span(~  w {I} )]('~)) 

Then applying Theorem 1 and observing that com(~(J r  ~)) = {0} yields the 
desired result. In the above chain, only the last equality needs some 
(straightforward) limit considerations (if ~ is infinite-dimensional). �9 

The next proposition presupposes some operational notions, explicit 
definitions of  which can be found in Busch and Lahti (1989). In short, 
an instrument J is an operation-valued measure on some o-algebra E, an 
operation is a positive linear mapping on the trace class describing the state 
change of  a physical system under measurement. Every instrument J induces 
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a unique effect observable a in a canonical way via Tr[d(X)p] = Tr[ pa(X)] 
(for all Xel~, all pc5  e ). Conversely, an observable a generally admits more 
than one instrument according to this rule. An instrument d is called re- 
peatable if it satisfies Tr[d(X)d( Y)p] = Tr[J (X n Y)p] for all X, YeE, all 
p~.Se (Davies, 1976). 

Proposition 4. If a is an informationally complete effect observable, 
then it does not permit any repeatable completely positive instruments. 

Proof See Busch and Lahti (1989) for details. In short, by a theorem 
of Ozawa (1984), only discrete observables a admit completely positive re- 
peatable instruments. Then the statement is a consequence of the preceding 
proposition and the fact that for discrete observables, repeatability implies 
corn(a) to be at least two-dimensional. �9 

These measurement-theoretic results illustrate the limitations on the 
measurability of informationally complete observables in quantum mech- 
anics. These limitations are the price to be paid for the possibility of ap- 
proaching a classical measurement situation, namely the simultaneous 
determination of all noncommuting observables, which necessarily can be 
achieved only in an approximate way (Busch and Lahti, 1989). 

As a last application of Theorem 1 we generalize the above-mentioned 
statement concerning the informational incompleteness of spectral measures. 
An elementary proof using Hilbert space techniques consists in the following. 
Let A be a self-adjoint operator, E A its spectral measure. Take any vector 
~0e~ which is not an eigenvector of A and define ~=exp(iA)~0. Then the 
states p, cr corresponding to the one-dimensional projection operators onto 
the subspaces spanned by ~0 and ~ are different but satisfy 

Tr[pa]=Tr[o-a] for all a~R(E A) (and p~cr) 

Thus A, resp. E A, is not informationally complete. 
In the abstract algebraic setting we obtain the following more general 

result. 

Proposition 5. Let a be a projection-valued measure from a Boolean 
o--algebra into a W*-algebra d .  If d is commutative, then a is information- 
ally complete iff the ,-subalgebra ~'(a) generated by R(a) equals d .  If d 
is noncommutative, then a is not informationally complete. 

Here the algebra d ( a )  generated by R(a) is the o--weak closure of the 
complex span of R(a). 

Proof The statement follows immediately from Theorem 1 and the 
following facts, the proofs of which are quite straightforward: (1) d ( a ) =  
elh(a)+idh(a), where dh(a) is the o--weak closure [with respect to 
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(dh) ,  = (d,)h]  of the real span of R(a) ; (2) d ( a )  is an Abelian W*-subalge- 
bra of d .  �9 

6. C O N C L U D I N G  R E M A R K S  

To summarize, some mathematical aspects and physical applications of 
informationally complete observables are outlined in this paper. In particu- 
lar, metrical and topological characterizations of informational completeness 
are given which yield statistical distances and the possibility of classical 
(phase space) representations of quantum mechanics. 

The field of generalized quantum mechanics, particularly the theory of 
unsharp observables, is rapidly developing toward practical applications; 
for a short overview the reader is referred to Busch et al. (1989). Effect 
observables, and among them informationally complete phase space observ- 
ables, are of great importance in quantum optical experimentation (Grabow- 
ski, 1990, de Muynck and Martens, 1990). Moreover, the relevance of 
informational completeness to signal analysis and processing has been 
demonstrated recently (Healy and Schroeck, 1988). Also, there exist propos- 
als for realizing concrete experiments for measuring informationally com- 
plete polarization observables (Busch, 1987b; Busch and Schroeck, 1989). 

The idea of informational completeness also finds natural applications 
in statistical physics. First, as mentioned in Section 2, the reduction of state 
spaces by means of superselection rules or macroscopic observables may be 
interpreted in terms of informational completeness. Further, the phase space 
representations of quantum mechanics provide a basis for a unified treatment 
of quantum and classical statistical mechanics (Ali and Prugovecki, 1977b). 
More generally and finally, the classical embedding technique sketched in 
Section 3 may shed new light on the relations between quantum mechanical 
many-particle theories and macroscopic theories (Ludwig, 1987). This topic 
should be the subject of future investigations based on the work of Busch 
et al. (1990) and Ludwig (1987). 

REFERENCES 

Abbati, M. C., and Mania, A. (1981). Annales de l'Institut Henri Poincarb, XXXV, 259-285. 
Alfsen, E. M. (I 971). Compact Convex Sets and Boundary Integrals, Springer, Berlin. 
Ali, S. T. (1985). Nuovo Cimento, 8, 1-128. 
Ali, S. T., and Doebner, H. D. (1976). Journal of Mathematical Physics, 17, 1105-1111. 
Ali, S, T., and Prugovecki, E, (1977a). Journal of Mathematical Physics, 18, 219-228. 
Ali, S. T., and Prugovecki, E. (1977b). Physica, 89A, 501-521. 
Busch, P. (1987a). Unsharp reality and the question of quantum systems, in Symposium on the 

Foundations of Modern Physics 1987, P. Lahti and P. Mittelstaedt, eds., World Scientific, 
Singapore, pp. 105-125. 



Informationally Complete Sets of Physical Quantifies 1227 

Busch, P. (1987b). Foundations of Physics, 17, 905-937. 
Busch, P., and Lahti, P. J. (1989). Foundations of Physics, 19, 633-678. 
Busch, P., and Schroeck, F. E., Jr. (1989). Foundations of Physics, 19, 807-872. 
Busch, P., Cassinelli, G., and Lahti, P. J. (1990). Sigma-convex structures and classical 

embeddings of quantum mechanical state spaces, in preparation. 
Busch, P., Grabowski, M., and Lahti, P. J. (1989). Foundations of Physics Letters, 2, 331-345. 
Davies, E. B. (1976). Quantum Theory of Open Systems, Academic Press, New York. 
De Muynck, W. M., and Martens, H. (1990). Nonideal quantum measurements, simultaneous 

measurements of noncommuting observables, and the Bell inequalities, in Foundations of 
Quantum Mechanics in the Light of New Technology, Physical Society of Japan. 

Grabowski, M. (1991). Quantum measurement scheme and new examples of generalized 
observables, in Symposium on the Foundations of Modern Physics 1990, P. Lahti and 
P. Mittelstaedt, eds., World Scientific, Singapore, pp. 124-137. 

Gudder, S. P. (1973). Communications in Mathematical Physics, 29, 249-264. 
Hadjisavvas, N. (1981). Annales de l'Institut Henri Poincar~, XXXV, 287-309. 
Healy, D. M., and Schroeck, F. E., Jr. (1988). Application of stochastic quantum mechanics and 

coherent state methodologies to signal processing, Florida Atlantic University Preprint. 
Jauch, J. M., Misra, B., and Gibson, A. G. (1968). On the asymptotic condition of scattering 

theory, Helvetica Physica Acta, 41, 513-527. 
Ludwig, G. (1983). Foundations of Quantum Mechanics, Vol. 1 (Springer, Berlin). 
Ludwig, G. (1987). An Axiomatic Basis for Quantum Mechanics, Vol. 2: Quantum Mechanics 

and Macrosystems (Springer, Berlin). 
Ozawa, M. (1984). Journal of Mathematical Physics, 25, 79-87. 
Prugovecki, E. (1977). International Journal of Theoretical Physics, 16, 321-331. 
Prugovecki, E. (1986). Stochastic Quantum Mechanics and Quantum Spacetime, 2nd ed., Reidel, 

Dordrecht. 
Rudin, W. (1973). Functional Analysis, McGraw-Hill, New York. 
Schroeck, F. E., Jr. (1981 ). Journal of Mathematical Physics, 22, 2562-2572. 
Schroeck, F. E., Jr. (1988). On integration with respect to a positive operator valued measure, 

Florida Atlantic University Preprint. 
Schroeck, F. E., Jr. (1989). International Journal of Theoretical Physics, 28, 247-262. 
Schroeck, F. E., Jr. (1990). Quantum Mechanics on Phase Space, Monograph in preparation. 


